翻訳と辞書
Words near each other
・ Monster in the Closet
・ Monster in the Creek
・ Monster in the Machine
・ Monster Island
・ Monster Island (Buffy/Angel novel)
・ Monster Island (film)
・ Monster Island (Wellington novel)
・ Monster Jam
・ Monster Jam Path of Destruction Tour
・ Monster Jam video games
・ Monster Jam World Finals
・ Monster Jam World Finals 1
・ Monster Kingdom
・ Monster Lab
・ Monster Land
Monster Lie algebra
・ Monster literature
・ Monster Love
・ Monster Madhouse Live
・ Monster Madness
・ Monster Madness (album)
・ Monster Maezuka
・ Monster Magnet
・ Monster Magnet (EP)
・ Monster Maker
・ Monster Maker (album)
・ Monster Man
・ Monster Man (film)
・ Monster Man (novel)
・ Monster Man (TV series)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Monster Lie algebra : ウィキペディア英語版
Monster Lie algebra

In mathematics, the monster Lie algebra is an infinite-dimensional generalized Kac–Moody algebra acted on by the monster group, which was used to prove the monstrous moonshine conjectures.
== Structure ==
The monster Lie algebra ''m'' is a ''Z2''-graded Lie algebra.
The piece of degree ''(m,n)'' has dimension ''cmn'' if
''(m,n)'' is nonzero, and dimension 2 if ''(m,n)'' is (0,0).
The integers ''cn'' are the coefficients
of ''qn'' of the j-invariant as elliptic modular function
::j(q) -744 = + 196884 q + 21493760 q^2 + \cdots.

The Cartan subalgebra is the 2-dimensional subspace of degree
(0,0), so the monster Lie algebra has rank 2.
The monster Lie algebra has just one real simple root, given by the vector
(1,-1), and the Weyl group has order 2, and acts by mapping
''(m,n)'' to ''(n,m)''. The imaginary simple roots are the vectors
:(1,''n'') for ''n'' = 1,2,3,...,
and they have multiplicities ''cn''.
The denominator formula for the monster Lie algebra is the product formula
for the ''j''-invariant:
::j(p)-j(q) = \left( - \right) \prod_^(1-p^n q^m)^{c_{nm}}.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Monster Lie algebra」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.